
Journal of Statistical Physics, Vol. 52, Nos. 1/2, 1988 

Exact Solutions of a Fokker-Planck Equation 
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Exact explicit solutions are given for a one-dimensional Fokker-Planck 
equation with a particular potential form involving hyperbolic functions. This 
potential contains four arbitrary parameters that can be chosen so that the 
potential is bistable. The solutions also contain parameters that can be chosen 
so that the initial distribution is approximately Gaussian, centered either at the 
unstable potential maximum or in the neighborhood of the secondary minimum. 
The use of the solutions to approximate solutions for other potentials is 
considered. 

KEY WORDS: Bistable potentials; Fokker-Planck equation; exactly solved 
models. 

1. INTRODUCTION 

The Fokker-Planck equation has many applications, (1) but not many 
closed-form solutions are available. Apart from the similarity solutions, (2) 
which involve the hypergeometric function, most analytic work has been 
based on a transformation to a Schr6dinger-type equation, followed by 
expansions in the eigenfunctions of this equation. In only a few examples 
can the resulting series solutions be summed to closed-form expressions. 

In the last few years the number of known solutions of the 
Schr6dinger equation has been increased (3 5) by the use of the Darboux 
transformation, which connects solutions of different second-order linear 
differential equations. The application of this work to the one-dimensional 
Fokker-Planck equation has given new solutions (6) for bistable potentials, 
in the form of eigenfunction expansions, the Darboux procedure generating 
the individual eigenfunctions. However, in cases where the eigenfunction 
expansion can be avoided (7) in the Schr6dinger equation, it is also 
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unnecessary in the corresponding Fokker-Planck equation, so that 
closed-form solutions are obtained. The purpose of this paper is to give 
Various examples arising from the solvable Schr6dinger potentials given by 
Sukumar. (5) The advantages of explicit solutions have been stressed 
recently (8) and some given for the half-range interval [0, oo). The solutions 
given in this paper are for the full interval ( -  m, az ). 

New solutions of the Fokker-Planck equation can also be generated ~9~ 
using the Gelfand-Levitan method to change the associated Schr6dinger 
equation. This has been shown (1~ to be equivalent to using two Darboux 
transformations. 

In the next section the relation between the one-dimensional 
Schr6dinger and Fokker-Planck equations is summarized in a form con- 
venient for later use and the application of the Darboux transformation is 
described. Then examples are given of exact, explicit solutions for a poten- 
tial with parameters that can be chosen so that it is bistable. Section 4 
discusses the choice of potential parameters to simulate a given potential of 
a different form. 

2. F O K K E R - P L A N C K  A N D  S C H R O D I N G E R  E Q U A T I O N S  

The Fokker-Planck equation ~1) can be taken in the form 

OW2~2WO{ dR } 
8t - h  --~Tx2 + ~ x  x ~xx W (2.1) 

where u(x) is the Fokker-Planck potential. Since W(x, t) is a probability 
density, a solution of physical interest should be nonnegative and 
normalizable to satisfy 

r joo w(x,  t) dx = 1 (2.2) 
oo 

The time-independent function 

w(x) = e -"~x~/h2 (2.3) 

satisfies (2.1), and, if normalizable, is the stationary solution, which is (1) the 
final form of any solution as t --+ oo. 

The Schr6dinger-type equation associated with (2.1) is 

~[//  ' 2 6~21/] 
~ = ~ ,  g-Zx ~ - V(x )~ ,  (2.4) 
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where 

1 (du~ 2 l d2u (2.5) 
V = ~  \ d x J  2 dx 2 

If ~ satisfies (2.4), then W = ~ e x p ( - u / 2 h  2) satisfies (2.1). Also, 
exp( -u /2h  2) satisfies (2.4); if normalizable, it is the lowest eigenfunction of 
the operator - h  2 dZ/dx2-}  - V ( x ) ,  belonging to the eigenvalue zero. 

Any known solution of a time-dependent Schr6dinger equation gives a 
solution of (2.4) on converting to imaginary time. A corresponding 
Fokker-Planck potential u(x) may be found by equating exp( -u /2h  2) to 
the ground-state eigenfunction (if this exists). Although a constant can be 
added to the Schr6dinger potential V(x) so that zero is the ground-state 
eigenvalue, for the work in this paper it is more convenient to allow a non- 
zero lowest Schr6dinger eigenvalue 2: 

d 2 I-h2--~x2 + V(x)] e-u/2h2~ ,~e-u/2h2 (2.6) 

This requires solutions of (2.1) and (2.4) to be related by 

W(x, t) = ~p(x, t) e;"e u/Zh2 (2.7) 

while in (2.5), V is increased by 2. 
Actually, exp( -u /2h  2) in (2.7) can be any positive solution of (2.6), 

i.e., does not have to be normalizable, so that 2 need not be an eigenvalue. 
For example, if V(x)= 0 (the heat equation), a solution of (2.4) is 

~9(x, t )= (1  +2flhZt) 1/2exp[- f l (x-a)2/2(1  +2flhZt)] (2.8) 

and cosh ~x satisfies (2.6) with 2 = - h 2 ~  2. Then 

W(x, t) = ~9(x, t) cosh ~x e -h2~2t (2.9) 

is a solution of (2.1) with the "inverted" potential u(x)= h 2 log(sech 2 ~x). 
The Darboux transformation uses an operator ~ 5) 

a hd~ 
B =  --h -~- q (2.10) 

~ dx GX 

where ~b is a positive solution of 

_ h  2 d2( ~ 
~x~+ V(x)~ = ~ (2.11) 
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Then (7) if r t) satisfies (2.4), ~ = BO satisfies a similar equation with V 
replaced by 

d 
V= V - Z ~x k-~ -~x j (2.12) 

and ~" and ~ can be used in (2.6) and (2.7) to obtain Fokker-Planck 
solutions. 

The operator B also transforms solutions (in particular, eigen- 
functions) of the time-independent equation into solutions for the new 
potential. Another solution of (2.11) when ~" replaces V is 1/~b. 

For the work below it will be sufficient to take 1/~b for exp ( -u /2h  2) in 
(2.6) and 2 =/~. Then, using ~, (2.7) becomes 

W l ( X , t ) = - h  q3 \ 0  x ; ~ x ) = - h e ~ '  f---~(~) (2.13) 

The normalization integral (2.2) is therefore 

Wl(x, t) dx = - h e  ~' 
- - c O  - -  o o  

In cases where the Fokke~Planck  potential u(x) satisfies u(_+ o o ) ~  oo, 
1/~--,0, and ~cOcO W l d x = 0 .  However, w = e x p ( - u / h 2 ) = ~ )  -2 is then 
a normalizable stationary solution, and adding a multiple of W1 will 
not change the normalization. Thus, solutions of (2.1) with potential 
u = 2h 2 In q~ are given by (11) 

W(x, t) = ke ~' -~x 

where N ~ is the normalization constant j'~o~ ~b 2(x) dx. The constant k is 
arbitrary, but for a physical solution will be restricted by the condition 
W(x, t) >~ O. 

For example, take ~ from (2.8), and ~b(x)= cosh vx as the solution of 
(2.11), with / t=  -hZv 2. Writing p = ( 1  +2/~h2t) i, one finds that (2.14) is 
given by 

W(x, t) = -kpl/Z(sech vx)[v tanh vx + pfl(x - a)]  

• e x p [ - v Z h 2 t - f l p ( x - a ) 2 / 2 ] + � 8 9  (2.15) 

which is a solution of the Fokker Planck equation (2.1) with the potential 

U(X) = 2h 2 log ~b(x) = h 2 log(cosh 2 vx) 
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Note that #, which is negative but otherwise can be chosen arbitrarily, is 
the Schr6dinger eigenvalue. 

The type of Darboux transformation considered here always gives 
a new Schr6dinger potential with one extra prescribed eigenvalue. By 
applying a succession of transformations, one can add an arbitrary number 
of prescribed eigenvalues. (5) 

3. SOLUTIONS FOR BISTABLE POTENTIALS 

Starting from potential zero, two Darboux transformations are suf- 
ficient to give potentials with two minima. The first is essentially that 
giving (2.15), which can be generalized by replacing vx by vx+ co. Then 

sech(vx+co) is a Schr6dinger eigenfunction for the eigenvalue -hZv 2. 
Another solution of the Schr6dinger equation, generated using (2.10), is 

(~(x)=I-hd+hvtanh(vx+co)] [ -  sinh(~x + 0)] 

=hycosh(?x +O)-hvtanh(vx +co)sinh(Tx +O) (3.1) 

This solution is not normalizable, but is positive if ? > v > 0, and can 
therefore be used as the ~b(x) in (2.10) for the second Darboux transfor- 
mation. It satisfies (2.11) with # =  -h2? 2. 

Thus, applying B given by (2.10) and (3.1), we have that 

t~(x, t)=B{pl/2[vtanh(vx+co)+~p(x-a)] exp[-flp(x-a)2/2]} (3.2) 

satisfies a Schr6dinger equation. The Schr6dinger potential V is given by 
(2.12) with V(x) = - 2 v  2 sech2(vx + co), but its explicit form is not required 
here. The ground-state Schr6dinger eigenfunction is 1/~b belonging to the 
eigenvalue -h27 2, and there is also an eigenfunction B[sech(vx+co)] 
belonging to the (previous) eigenvalue -h2v2>-h27 2. Using a method 
given by Zheng, (12) we obtain the normalization constant for the ground 
state as N = l h 2 7 ( ~ 2  - v 2 ) .  

Solutions can now be written down for the Fokker-Planck equation 
with potential 2h z log ~b. The normalized steady-state solution is 

g(x) = h27(72 - vZ)/2~bZ(x) (3.3) 

A transient solution corresponding to the next Schr6dinger eigenfunction is 

f(x, t)=sinh(Tx+O){exp[(v2-TZ)h2t]}/(~2(x)cosh(vx+co) (3.4) 



3 7 4  E n g l e f i e l d  

Fig. 1. 
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Transient solutions for h=0.35355, 7=2.67, v=2.59, 0 = - 0 . 6 3 ,  and ~=0.285. 
(--)  h2T(6.4, 0.106; x, 0.0); (- -) hZT(8.0, -0.53; x, 0.0). 
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Fig.  2. S o l u t i o n  for  h = 1.0, 7 = 1.293, v = 1.054, a n d  0 = co = 0. T h e  c u r v e s  s h o w  W(x, t) of  

(3 .6)  w i t h  c = - 0 . 1 7 7 , / ~ l  = 4 . 7 ,  a I = - 1 . 1 ,  k 1 = - 0 . 0 9 5 , / ~ 2  = 1.0, a2 = 0 . 5 ,  a n d  k 2 = 0 . 0 9 .  T i m e s  

s h o w n  a r e  t = 0 ,  (- -)  0.1, ( . . . )  1.0, a n d  10.0 ( the  s t e a d y  s t a t e  s h o w n  in Fig.  5). 
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The transient solution T(fl, a; x, t) obtained from (3.2) is 

_ v2 (7 2 - v2)[flp(x - a) + v tanh(vx + co)]'~ 
tip fl2p2(x a )  2 + + 

7 coth(Tx + 0) - v tanh(vx + co) J 

pl/2 i_72h2t flp(x_a)21 (3.5) • ~ - ~  exp 2 

Since the solutions f and T have zero integral on ( - ~ ,  ~ ) ,  they must 
change sign, and are therefore not physically acceptable. For the potential 
with v=2.59, 7=2.67, co=0.285, and 0 = - 0 . 6 3 ,  two examples of the 
solutions T(fl, a; x, 0) are shown in Fig. 1. 
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Fig. 3. Solution for h = 0.4082, 7 = 2.152, v = 2.038, and 0 = o9 = 0. The curves show W(x, t) 
of (3.6) with c=O=al=a2, /31=3.6, k l = - 0 . 0 6 8 3 3 ,  ,62=0.9, and k2=-0.014833.  Times 
shown are t =0.0, (--)  0.3, (-.-) 0.8, and 6.4 (the steady state shown in Fig. 6). 
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Nonnegative solutions may be obtained by suitable superpositions of 
(3.3)-(3.5) of the general form 

W(x, t) = g(x)  + ef(x, t) + ~, k,T(fl , ,  a,; x, t) (3.6) 
i 

Some examples are given in Figs. 2-4. Potentials with c# = 0 = 0, as in 
Figs. 2 and 3, are even, and then ~b and g will be even, f is odd, and T is 
even if a = 0. 

The exponential factors in (3.4) and (3.5) make the solutions T decay 
faster than f;  in Figs. 2 and 4 the solutions T are negligible for t > 1.4 and 
t >  15, respectively. The functions T contributing to the solutions in Fig. 4 
are those shown in Fig. 1. 

The solutions T also depend on t through the factor p, which causes 
the distribution to spread rather than move overall. Since the 
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Fig. 4. Solution for h=0.35355, y=2.67, v=2.59, 0= -0 .6 3 ,  and o9=0.285. The curves 
show W(x,t) of (3.6) with c = - 0 . 1 3 ,  /~1=6.4, a1=0.106, k1=--0.01375, /~2=8.0, 
a 2 = - - 0 . 5 3 ,  and k2 = -0.0625. Times shown are t =0.0, 6.0, 18.0, and 100.0 (the steady state 
shown in Fig. 7). 
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Fokker-Planck equation (2.1) is invariant under time translation, one can 
replace t by t -  to in (3.5), which freedom may be useful in fitting a given 
initial state. 

4. THE POTENTIAL 

The potential u=2h21ogr  with r given by (3.1), contains four 
parameters v, 7, co, and O. Its asymptotic behavior is 2 

u( 4- oo ) - .  2h2{log[�89 - v)] 4- 0 4- 7x} (4.1) 

What actually appears in the Fokker-Planck equation (2.1) is 

u'=2h2r162 +_2h= 7 as x--* _+oo (4.2) 

2 D i m e n s i o n a l  cons iderat ions  indicate  that  it m a y  be better to r e m o v e  l o g [ � 8 9  (as an 
arbitrary constant  change  to the potential ) .  
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In applications the potential parameters have to be chosen to simulate 
the physical potential, especially in the region of the double minimum. 
Some aspects of this fitting procedure will now be discussed, using for a 
given physical potential v the model examples with (13-15) v ' ( x ) = x 3 - x  

and (16) v ' ( x )  = x 3 - x - 1/8. 
If v ' ( x )  = x 3 - x ,  then 

v(O)--v(1)=I/4, v ' ( l )  = v'(O) = O, v " (1 )  = 2, v " (O) - -  - I  (4.3) 

are properties one would like to fit. For u to be even requires co = 0 = 0, 
giving u ' (0 )=  0, but leaving only two parameters 7 and v to be chosen to 
satisfy the remaining four conditions of (4.3). The best overall fit seems to 
be obtained by fitting the first two conditions. For h =  1 this gives 
v=1.054, 7=1.293, u"(1)=1.63, u " ( 0 ) = - 1 . 1 ;  the overall result is 
illustrated in Figure5. For h=0.4082 (h2=1/6),  v=2.038, 7=2.152, 
u"(1)=  1.36, u"(0)=  -1.23; the overall result is shown in Fig. 6. In each 
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Fig. 6. C o m p a r i s o n  of v ' ( x )  = x 3 - -  x and  u' = 2h2~b ' /O  with  h 2 = 1/6. v = 2.038, 

co = 0 = 0 .  (a)  S teady-s ta te  solut ions,  ( b ) v '  and  u', ( c ) v  and  u. 
y = 2.152, and  
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figure a constant has been added to v(x) so that v (1)=u(1) .  The two 
potentials u are also shown in Figs. 2 and 3. 

Least squares fits of the two parameters  v and ~, to all conditions in 
(4.3) did not seem to give any improvement.  Another possibility is to use a 
quasieven potential in which u(x) is defined by (3.1) and u = 2 h  2 log ~b for 
x~0~  and then completed by u ( - x ) = u ( x ) .  This allows co and 0 to be 
nonzero; fitting the last four conditions in (4.3) with the four parameters 
gives the results in Table I. The term "quasieven" indicates that higher odd 
derivatives of u may not be zero at x = 0. 

If v'(x)= x 3 -  x -  1/8, then v' has zeros at x = -0.9306, -0.1271,  and 
1.058. The four parameters in u can be fixed by these three conditions on u' 
and also the value of the second derivative at one of the points. For  exam- 
ple, for h=0.35355 (h2=1/8) ,  requiring u " ( - 0 . 9 3 0 6 ) = v " ( - 0 . 9 3 0 6 ) =  
1.597 gives the parameters 

v = 2.59, 7 = 2.67, co = 0.285, 0 = -0 .63 

and the results shown in Fig. 7. The potential is also shown in Fig. 4. 
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380 Englefield 

Table I. Parameters for Quasieven Potentials Approximat ing v ' = x 3 - x  

h h 2 v y co 0 u(0) u(1) 

1. 1. 1.14 1.44 - 0 . 1 2 8  - 0 . 2 7 4  0.27 

0.4082 1/6 2.28 2.59 - 0.261 - 0.136 0.32 

0.3162 0.1 2.88 3.22 - 0.28 - 1.74 0.31 

By using further Darboux transformations, more potential parameters 
may be introduced. The required formulas for the corresponding 
Schr6dinger equation have been given/s) However, the three-parameter 
even potential (corresponding to three Schr6dinger eigenvalues introduced 
by three Darboux transformations) was not useful, since there was always 
a minimum at x = 0. 

5. D ISCUSSION A N D  C O N C L U S I O N  

This paper has given exact, explicit solutions involving only elemen- 
tary functions for a Fokker-Planck equation with a potential of the form 
u = 2h 2 log ~b with ~b(x) given in (3.1). Suitable linear combinations of these 
solutions represent the decay of distributions corresponding to an initial 
concentration at either the unstable maximum point (Fig. 3) or the secon- 
dary minimum point (Figs. 2 and 4) of a bistable potential. In the potential 
there are four parameters that can be chosen to approximate any other 
required form, while the solutions contain parameters that can be chosen 
to simulate a required initial configuration. 

The examples illustrated correspond to certain previous calculations. 
The potentials used in Figs. 2 and 3 were obtained by fitting u'(x) to 
x 3 - x ,  and the distributions shown correspond to results exhibited by 
Baibuz etal. ~13) in their Figs. 1 and 2. The potential used in Fig. 4 was 
obtained by fitting to x 3 -  x -  1/8, and the distributions shown correspond 
to the results given in Fig. 5a of Tomita eta/. (16) 

The potential fitting, illustrated in Figs. 5 7, is poor outside the region 
between the two minima. Although this cannot be avoided using the poten- 
tial obtained from (3.1), because u' and v ' = x 3 - x  have different 
asymptotic forms, the defect is not too important when the initial dis- 
tribution is mainly between the minima. Nevertheless, it will be worth 
extending the method to include potentials with different asymptotic 
behavior, which can be obtained using the Darboux transformation. (4"6) 

The deviation of asymptotic forms also has a significant effect on the 
Schr6dinger eigenvalues, which determine the decay rates of the transients 
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appea r ing  in an  eigenfunct ion expansion.  Since u ' ( x ) ~  +_2h27 ra ther  than  
u ' ( x ) ~  ___or, the fit outs ide  the min ima  is worse  for smal ler  values 

of h. The  po ten t ia l  ob ta ined  (see Table  I)  for h 2 = 0 . 1  has Schr6dinger  
eigenvalues differing by  h Z ( 7 2 - v 2 ) = 0 . 2 0 8  c o m p a r e d  to (14) 0.927 for 

u'(x)=x3-x. 
Anothe r  ma t t e r  requi r ing  further  work  is the fitt ing of  a given init ial  

state to (3.6) with t = 0 .  F o r  the ini t ial  states in Figs. 2~4 the values of  c 
and  ki were ob ta ined  by requi r ing  W(x ,  0) to be posit ive,  but  the fli and  ai 
were chosen by tr ial  and  error.  Some sys temat ic  m e t h o d  is desirable.  
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