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Exact Solutions of a Fokker—Planck Equation
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Exact explicit solutions are given for a one-dimensional Fokker—Planck
equation with a particular potential form involving hyperbolic functions. This
potential contains four arbitrary parameters that can be chosen so that the
potential 1s bistable. The solutions also contain parameters that can be chosen
so that the initial distribution is approximately Gaussian, centered either at the
unstable potential maximum or in the neighborhood of the secondary minimum.
The use of the solutions to approximate solutions for other potentials is
considered.
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models.

1. INTRODUCTION

The Fokker-Planck equation has many applications,'”’ but not many
closed-form solutions are available. Apart from the similarity solutions,®
which involve the hypergeometric function, most analytic work has been
based on a transformation to a Schrodinger-type equation, followed by
expansions in the eigenfunctions of this equation. In only a few examples
can the resulting series solutions be summed to closed-form expressions.
In the last few years the number of known solutions of the
Schrodinger equation has been increased®™ by the use of the Darboux
transformation, which connects solutions of different second-order linear
differential equations. The application of this work to the one-dimensional
Fokker-Planck equation has given new solutions® for bistable potentials,
in the form of eigenfunction expansions, the Darboux procedure generating
the individual eigenfunctions. However, in cases where the eigenfunction
expansion can be avoided’ in the Schrédinger equation, it is also
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unnecessary in the corresponding Fokker-Planck equation, so that
closed-form solutions are obtained. The purpose of this paper is to give
various examples arising from the solvable Schrédinger potentials given by
Sukumar.®) The advantages of explicit solutions have been stressed
recently® and some given for the half-range interval [0, o). The solutions
given in this paper are for the full interval (— o0, o).

New solutions of the Fokker-Planck equation can also be generated®
using the Gelfand-Levitan method to change the associated Schrodinger
equation. This has been shown'” to be equivalent to using two Darboux
transformations.

In the next section the relation between the one-dimensional
Schrédinger and Fokker-Planck equations is summarized in a form con-
venient for later use and the application of the Darboux transformation is
described. Then examples are given of exact, explicit solutions for a poten-
tial with parameters that can be chosen so that it is bistable. Section 4
discusses the choice of potential parameters to simulate a given potential of
a different form.

2. FOKKER-PLANCK AND SCHRODINGER EQUATIONS

The Fokker-Planck equation”’ can be taken in the form

2
oW LPW D {du W} o)

T A

where u(x) is the Fokker—Planck potential. Since W(x, 1) is a probability
density, a solution of physical interest should be nonnegative and
normalizable to satisfy

[7 Wi ndx=1 (2.2)

The time-independent function

w(x) = e~ (2.3)

satisfies (2.1), and, if normalizable, is the stationary solution, which is!’ the
final form of any solution as ¢ — co.
The Schridinger-type equation associated with (2.1) is

W_ O

5 Frci V(ix)y (2.4)
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where

1 [du\* 1d*u
V= <dx> 2 dx? 23
If  satisfies (2.4), then W=y exp(—u/2h*) satisfies (2.1). Also,
exp( —u/2h?) satisfies (2.4); if normalizable, it is the lowest eigenfunction of
the operator —Ah? d?/dx? + V(x), belonging to the eigenvalue zero.

Any known solution of a time-dependent Schrédinger equation gives a
solution of (2.4) on converting to imaginary time. A corresponding
Fokker-Planck potential u(x) may be found by equating exp(—u/2h?) to
the ground-state eigenfunction (if this exists). Aithough a constant can be
added to the Schrodinger potential V(x) so that zero is the ground-state

eigenvalue, for the work in this paper it is more convenient to allow a non-
zero lowest Schrodinger eigenvalue A:

[ hzd—+ V(x)] e W = Je (2.6)

This requires solutions of {2.1) and (2.4) to be related by
W(x, 1) =y(x, t) e¥e > 2.7)

while in (2.5), V is increased by A.

Actually, exp(—u/2h%) in (2.7) can be any positive solution of (2.6),
Le., does not have to be normalizable, so that A need not be an eigenvalue.
For example, if V(x)=0 (the heat equation), a solution of (2.4) is

W(x, t)=(1+2Bh%t) " exp[ — B(x — a)*/2(1 + 2Bh%*t)] 2.8)
and cosh xx satisfies (2.6) with 4= —h%x% Then
W(x, 1) =(x, t) cosh ox e =" (2.9)

is a solution of (2.1) with the “inverted” potential u(x) = h? log(sech? ax).
The Darboux transformation uses an operator®—

B h dg
_ ﬁhé; e (2.10)

where ¢ is a positive solution of

—h L s Vs = (211)
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Then” if y(x, ) satisfies (2.4), ¥ = By satisfies a similar equation with ¥
replaced by

o d (1d¢
V=V 2dx <¢ dx) (2.12)
and ¥ and § can be used in (2.6) and (2.7) to obtain Fokker—Planck
solutions.

The operator B also transforms solutions (in particular, eigen-
functions) of the time-independent equation into solutions for the new
potential. Another solution of (2.11) when ¥ replaces V is 1/g.

For the work below it will be sufficient to take 1/¢ for exp(—u/2h?) in
(2.6) and A= u. Then, using ¢, (2.7) becomes

i = hE (L) (9 oy

The normalization integral (2.2) is therefore

fio Wi(x, t)dx= —he" I:%:'(:c

In cases where the Fokker—Planck potential u(x) satisfies u(+ o0)— oo,
1/¢ -0, and [*_ W,dx=0. However, w=exp(—u/h’)=¢ % is then
a normalizable stationary solution, and adding a multiple of W, will
not change the normalization. Thus, solutions of (2.1) with potential
u=2h*In ¢ are given by

LN CATE
Wix, 1) = ke 6x<¢>+¢2 (2.14)

where N~ ' is the normalization constant [*_ ¢ ~?(x) dx. The constant k is
arbitrary, but for a physical solution will be restricted by the condition
Wi(x, t)=0.

For example, take ¥ from (2.8), and ¢(x)=cosh vx as the solution of
(2.11), with g= —h*v>. Writing p = (1 +2Bh%*) "', one finds that (2.14) is
given by

Wi(x, t)= —kp'?(sech vx)[v tanh vx + pB{x —a)]

x exp[ —v’h*t— Bp(x —a)?/2] + Lv sech? vx (2.15)
which is a solution of the Fokker—Planck equation (2.1) with the potential

u(x)=2h*log ¢(x) = h* log(cosh? vx)
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Note that u, which is negative but otherwise can be chosen arbitrarily, is
the Schrodinger eigenvalue.

The type of Darboux transformation considered here always gives
a new Schrédinger potential with one extra prescribed eigenvalue. By
applying a succession of transformations, one can add an arbitrary number
of prescribed eigenvalues.®)

3. SOLUTIONS FOR BISTABLE POTENTIALS

Starting from potential zero, two Darboux transformations are suf-
ficient to give potentials with two minima. The first is essentially that
giving (2.15), which can be generalized by replacing vx by vx + w. Then

sech(vx + ) is a Schrédinger eigenfunction for the eigenvalue —A%v7
Another solution of the Schrédinger equation, generated using (2.10), is

$(x)= [*h %+ hv tanh(vx + w)} [ —sinh(yx + 0)]
= hy cosh(yx + 0) — Av tanh(vx + ) sinh(yx + 0) (3.1)

This solution is not normalizable, but is positive if y >v >0, and can
therefore be used as the ¢(x) in (2.10) for the second Darboux transfor-
mation. It satisfies (2.11) with u= —h%>

Thus, applying B given by (2.10) and (3.1), we have that

Y(x, 1)=B{p"[vtanh(vx + w) + fp(x—a)J exp[ - fp(x—a)*/2]} ~ (3.2)

satisfies a Schrédinger equation. The Schrédinger potential ¥ is given by
(2.12) with V(x)= —2v? sech?(vx + w), but its explicit form is not required
here. The ground-state Schriodinger eigenfunction is 1/¢ belonging to the
eigenvalue —A%? and there is also an eigenfunction B[sech(vx+ )]
belonging to the (previous) eigenvalue —#*v>> —h%*?% Using a method
given by Zheng,"? we obtain the normalization constant for the ground
state as N=1h%y(y> —v?).

Solutions can now be written down for the Fokker—Planck equation
with potential 242 log ¢. The normalized steady-state solution is

gx)=n*(y* —v?*)24*(x) (3.3)

A transient solution corresponding to the next Schrodinger eigenfunction is

S(x, ) =sinh(yx + 0){exp[ (v’ —y*) #*t]}/¢*(x) cosh(vx + w) (3.4)
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Solution T/8

Position x

Fig. 1. Transient solutions for A=0.35355, y=267, v=259, 0= —0.63, and »=0.285.
(—) A2T(6.4, 0.106; x, 0.0); (- -) K2T(8.0, —0.53; x, 0.0).
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Fig. 2. Solution for 2=1.0, y=1.293, v=1.054, and 6 = w =0. The curves show W(x, t) of
(3.6) with ¢ = —0.177, §, =47, a; = —1.1, k; = —0.095, B, = 1.0, a, =0.5, and k, =0.09. Times
shown are =0, (--) 0.1, (---) 1.0, and 10.0 (the steady state shown in Fig. 5).
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The transient solution T(B, a; x, t) obtained from (3.2) is

2 2 2 2 (vz—vz)[ﬁp(x—a)+vtanh(vx+w)]
{*ﬂp—v + B x—a) + oth o £ 0) v nb (et ) }
_ﬂp(x—a)z]

2

1/2
$(x)

Since the solutions f and T have zero integral on (—o0, o0), they must
change sign, and are therefore not physically acceptable. For the potential
with v=2.59, y=2.67, =0.285, and 6= —0.63, two examples of the
solutions T(f, a; x, 0) are shown in Fig. 1.

X

exp l:—yzhzt (3.5)

0-8
06 +

0-4 |

Probability W

0-2

00 = iz | 4
-2 ~1 6] 1 2
Position x

T T T

Potential

Fig. 3. Solution for #=10.4082, y=2.152, v=2.038, and 6 = w =0. The curves show W(x, ¢}
of (3.6) with c=0=a,=a,, $,=3.6, k;= —0.06833, $,=09, and k,= —0.014833. Times
shown are 1 =0.0, (--) 0.3, (---) 0.8, and 6.4 (the steady state shown in Fig. 6).
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Nonnegative solutions may be obtained by suitable superpositions of
(3.3)-(3.5) of the general form

Wix, t)=g(x)+cf(x, 1)+ > k,T(B,, a;; x, 1) (3.6)

Some examples are given in Figs. 2-4. Potentials with w=6=0, as in
Figs. 2 and 3, are even, and then ¢ and g will be even, f is odd, and T is
even if a=0.

The exponential factors in (3.4) and (3.5) make the solutions 7" decay
faster than f; in Figs. 2 and 4 the solutions T are negligible for > 1.4 and
t> 15, respectively. The functions T contributing to the solutions in Fig. 4
are those shown in Fig. 1.

The solutions T also depend on ¢ through the factor p, which causes
the distribution to spread rather than move overall. Since the

Probability W

Position
T T T T

0-2 |
s
€ 0:0
©
2 L
o
o —o-zﬁ

Fig. 4. Solution for h=0.35355, y=2.67, v=2.59, = —0.63, and w=0.285. The curves
show W(x,1) of (3.6) with c¢= —0.13, f,=64, a,=0106, k= —001375 p,=80,
a,= —0.53, and k, = —0.0625. Times shown are r =00, 6.0, 18.0, and 100.0 (the steady state
shown in Fig. 7).
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Fokker—Planck equation (2.1) is invariant under time translation, one can

replace ¢ by t— ¢, in (3.5), which freedom may be useful in fitting a given
initial state.

4. THE POTENTIAL

The potential u=2h%log ¢, with ¢ given by (3.1), contains four
parameters v, y, , and 6. Its asymptotic behavior is?

u(+00) = 2h*{log[3h(y —v)1 £ 0 £ yx} (4.1)
What actually appears in the Fokker—Planck equation (2.1) is
u' =2h0°¢'|p - +2h%y as x— +ow (4.2)

2 Dimensional considerations indicate that it may be better to remove log[3A(y —v)] (as an
arbitrary constant change to the potential).
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Fig. 5. Comparison of v'(x)=x*—x and u’ = 2h%}'/¢ with k> =10, v=1.054, y = 1.293, and
w=0=0. (a) Steady-state solutions, (b) v’ and ', (c) v and u.
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In applications the potential parameters have to be chosen to simulate
the physical potential, especially in the region of the double minimum.
Some aspects of this fitting procedure will now be discussed, using for a
given physical potential v the model examples with>™® p'(x)=x*—x
and"® v'(x)=x>—x—1/8.

If v'(x) = x* — x, then

p(0)—ov(l)=1/4, v (1)=v'(0)=0, v"(1)=2, v"(0)=—1 (43)

are properties one would like to fit. For u to be even requires w =60=0,
giving #’(0) =0, but leaving only two parameters y and v to be chosen to
satisfy the remaining four conditions of (4.3). The best overall fit seems to
be obtained by fitting the first two conditions. For h=1 this gives
v=1.054, y=1.293, u"(1)=1.63, u"(0)= —1.1; the overall result is
illustrated in Figure 5. For h©=0.4082 (h*=1/6), v=2.038, 7y=2152,
u”"(1y=1.36, u”"(0)= —1.23; the overall result is shown in Fig. 6. In each
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Fig. 6. Comparison of v'(x) = x> — x and u’ = 2h%}'/¢ with h*=1/6. v=2.038, y =2.152, and
w=0=0. (a) Steady-state solutions, (b) v’ and ', (¢} v and u.



Exact Solutions of a Fokker-Planck Equation 379

figure a constant has been added to v(x) so that v(1)=wu(l). The two
potentials u are also shown in Figs. 2 and 3.

Least squares fits of the two parameters v and y to all conditions in
(4.3) did not seem to give any improvement. Another possibility is to use a
quasieven potential in which u(x) is defined by (3.1) and u = 2h” log ¢ for
x 20, and then completed by u(~x)=u(x). This allows w and 8 to be
nonzero; fitting the last four conditions in (4.3) with the four parameters
gives the results in Table 1. The term “quasieven” indicates that higher odd
derivatives of # may not be zero at x=0.

If v'(x)=x>—x—1/8, then v’ has zeros at x = —0.9306, —0.1271, and
1.058. The four parameters in u# can be fixed by these three conditions on u’
and also the value of the second derivative at one of the points. For exam-
ple, for h=0.35355 (h*=1/8), requiring u"(—0.9306)=0"(—0.9306)=
1.597 gives the parameters

v=2.59, y=2.67, w =0.285, = —0.63

and the results shown in Fig. 7. The potential is also shown in Fig. 4.
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Fig. 7. Comparison of v'(x)=x*—x—1/8 and u' =2h%}'/¢ with A*>=1/8, v=2.59, y=2.67,
w=0.285, and 6 = —0.63. (a) Steady-state solutions, (b) s’ and «/, (¢) v and u.
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Table I. Parameters for Quasieven Potentials Approximating v/ =x*—x

h h? v y w ] u(0) —u(1)
1. 1. 1.14 1.44 —0.128 —0.274 0.27
0.4082 1/6 2.28 2.59 —0.261 —0.136 0.32
0.3162 0.1 2.88 322 —0.28 —1.74 0.31

By using further Darboux transformations, more potential parameters
may be introduced. The required formulas for the corresponding
Schrodinger equation have been given.””) However, the three-parameter
even potential (corresponding to three Schrodinger eigenvalues introduced
by three Darboux transformations) was not useful, since there was always
a minimum at x =0.

5. DISCUSSION AND CONCLUSION

This paper has given exact, explicit solutions involving only elemen-
tary functions for a Fokker-Planck equation with a potential of the form
u=2h?log ¢ with ¢(x) given in (3.1). Suitable linear combinations of these
solutions represent the decay of distributions corresponding to an initial
concentration at either the unstable maximum point (Fig. 3) or the secon-
dary minimum point (Figs. 2 and 4) of a bistable potential. In the potential
there are four parameters that can be chosen to approximate any other
required form, while the solutions contain parameters that can be chosen
to simulate a required initial configuration.

The examples illustrated correspond to certain previous calculations.
The potentials used in Figs.2 and 3 were obtained by fitting #'(x) to
x*—x, and the distributions shown correspond to results exhibited by
Baibuz er al.""*’ in their Figs.1 and 2. The potential used in Fig. 4 was
obtained by fitting to x* — x — 1/8, and the distributions shown correspond
to the results given in Fig. 5a of Tomita ef al.'®

The potential fitting, illustrated in Figs. 5-7, is poor outside the region
between the two minima. Although this cannot be avoided using the poten-
tial obtained from (3.1), because u' and v =x*>—x have different
asymptotic forms, the defect is not too important when the initial dis-
tribution is mainly between the minima. Nevertheless, it will be worth
extending the method to include potentials with different asymptotic
behavior, which can be obtained using the Darboux transformation.*

The deviation of asymptotic forms also has a significant effect on the
Schrédinger eigenvalues, which determine the decay rates of the transients
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appearing in an eigenfunction expansion. Since u'(x)— +2h% rather than
u'(x) > +oo, the fit outside the minima is worse for smaller values
of h. The potential obtained (see TableI) for A>=0.1 has Schrodinger
eigenvalues differing by A*(y?>—v?)=0.208 compared to"'* 0927 for
w(x)=x>—x.

Another matter requiring further work is the fitting of a given initial
state to (3.6) with r=0. For the initial states in Figs. 2-4 the values of ¢
and k, were obtained by requiring W(x, 0) to be positive, but the f, and «;
were chosen by trial and error. Some systematic method is desirable.
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